Large-conductance Ca²⁺-activated potassium channel in mitochondria of endothelial EA.hy926 cells.
نویسندگان
چکیده
In the present study, we describe the existence of a large-conductance Ca²⁺-activated potassium (BKCa) channel in the mitochondria of the human endothelial cell line EA.hy926. A single-channel current was recorded from endothelial mitoplasts (i.e., inner mitochondrial membrane) using the patch-clamp technique in the mitoplast-attached mode. A potassium-selective current was recorded with a mean conductance equal to 270 ± 10 pS in a symmetrical 150/150 mM KCl isotonic solution. The channel activity, which was determined as the open probability, increased with the addition of calcium ions and the potassium channel opener NS1619. Conversely, the activity of the channel was irreversibly blocked by paxilline and iberiotoxin, BKCa channel inhibitors. The open-state probability was found to be voltage dependent. The substances known to modulate BKCa channel activity influenced the bioenergetics of mitochondria isolated from human endothelial EA.hy926 cells. In isolated mitochondria, 100 μM Ca²⁺, 10 μM NS1619, and 0.5 μM NS11021 depolarized the mitochondrial membrane potential and stimulated nonphosphorylating respiration. These effects were blocked by iberiotoxin and paxilline in a potassium-dependent manner. Under phosphorylating conditions, NS1619-induced, iberiotoxin-sensitive uncoupling diverted energy from ATP synthesis during the phosphorylating respiration of the endothelial mitochondria. Immunological analysis with antibodies raised against proteins of the plasma membrane BKCa channel identified a pore-forming α-subunit and an auxiliary β₂-subunit of the channel in the endothelial mitochondrial inner membrane. In conclusion, we show for the first time that the inner mitochondrial membrane in human endothelial EA.hy926 cells contains a large-conductance calcium-dependent potassium channel with properties similar to those of the surface membrane BKCa channel.
منابع مشابه
CALL FOR PAPERS Mitochondria in Cardiovascular Physiology and Disease Large-conductance Ca -activated potassium channel in mitochondria of endothelial EA.hy926 cells
Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A. Large-conductance Ca -activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 304: H1415–H1427, 2013. First published March 29, 2013; doi:10.1152/ajpheart.00976.2012.—In the present study, we describe the existence of a large-conductance Ca -activated potassium (BKCa) channel in the mitochon...
متن کاملEndothelial mitochondria as a possible target for potassium channel modulators.
Variety of ion channels is present in plasma membrane of endothelial cells. These include the potassium channels such as Ca(2+)-activated K(+) channels, inwardly rectifying K(+) channels, voltage-dependent K(+) channels and also ATP-regulated K(+) channels. Due to an influence on the membrane potential they are important regulators of vascular tone by modulating endothelial calcium ions signali...
متن کاملEndothelium as target for large-conductance calcium-activated potassium channel openers.
The endothelium is a highly active organ responsible for vasculatory tone and structure, angiogenesis, as well as hemodynamic, humoral, and inflammatory responses. The endothelium is constantly exposed to blood flow, sheer stress and tension. Endothelial cells are present as a vasculature in every tissue of the body and react to and control its microenvironment. A variety of ion channels are pr...
متن کاملMartentoxin, a large-conductance Ca2+-activated K+ channel inhibitor, attenuated TNF-α-induced nitric oxide release by human umbilical vein endothelial cells
Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca(2+)-activated K(+) (BKCa) channels; however, its biological roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin on regulating the production of nitric oxide induced by TNF-α in...
متن کاملCalcium Ions Regulate K+ Uptake into Brain Mitochondria: The Evidence for a Novel Potassium Channel
The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca(2+) additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca(2+) effects can be blocked by ib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 304 11 شماره
صفحات -
تاریخ انتشار 2013